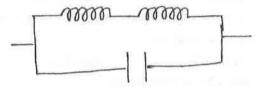

M.Tech. Entrance Test – 2013 (AKU, Patna)


Subject:- Physics

		-			
Tim	ne: - 1½ Hrs.			Full marks: 50	
INS	TRUCTIONS: -There are for	our options given fo	or a question. You ha	ave choose the correct	
	option/s. C	Candidates are requ	ired to submit this	Question paper with	
	answer boo	ok.			
1.	The kinetic energy of a	free electron at a c	orner of the first Bri	llouin Zone of a two –	
1,0					
	dimensional square lattice is larger than that of an electron at the mid-point of a side of the zone by a factor b. The value of b is:				
	•		(c) $b = 4$	(d) $h = 8$	
2.	For a three-dimensional	• •			
۷.	number of optical branc				
	(a) 3		(c) $3p - 3$	(d) $3 - 3p$	
3.	In a powder diffraction	` / 1	` ' *		
	the first peak appears at 30°. The second peak will appear at:				
	(a) 32.8°	(b) 33.7°	(c) 34.8°	(d) 35.3°	
4.	If \vec{g} is a reciprocal lattice	ce vector, the Bragg'	s law can be written	as:	
	(a) $\vec{k} + \vec{q} = 0$	(b) $\vec{2k} \cdot \vec{g} + g^2 =$	0 (c) $\vec{2k} \cdot \vec{g} + k^2 =$	= 0 (d) \vec{k} . \vec{g} = 0	
5.	Electronic contribution to the specific heat of a metal at low temperature is:				
	(a) An exponential function of T (b) A linear function of T				
	(c) Zero	(d) N	lone of these.		
6.	Germanium having a forbidden gap of 0.72 ev is irradiated with monochromatic				
	radiation. The wavelen	gth required that w	ould be sufficient to	creat an electron hole	
	pair will be:				
	* *	1 1		(d) None of these	
7.	If the Fermi energy of silver at OK is 5ev, the mean energy of electron in silver at OK				
	is:	(L) 12 aV	(a) 1.5 aV	(d) 2 aV	
0			(c) 1.5 eV		
8.	On lightly doping an intrinsic semiconductor with donor impurities, the electron carrier concentration is the conduction band is found to increase from η to ηf . If $\mu \eta$ and μr				
	are the mobilities of electrons and holes respectively, the conductivity of the doped				
	semiconductor will be:				
		(b) $\eta e (f \mu_{\eta} + \mu_{p})$	(c) $nefu_n$	(d) $\eta e (\mu_{\eta} + \mu_{p})$	
9.	A junction field effect to			(a) 1/9 (pil + pip)	
2000	(a) Voltage – controlled Current Source				
	(b) Voltage – controlled				
	(c) Current – Controlled				
	(d) Current – Controlled	d Current Source			

- 10. The high input impedence of field effect transistor (FET) amplifier is due to:
 - (a) The pinch off voltage
 - (b) Its very low gate current
 - (c) The source and drain being far apart
 - (d) The geometry of the FET
- 11. The output V₀ of the ideal op-amp circuit shown in the figure is

- (a) 7V
- (b) 5V
- (c) 5V
- (d) 7V
- 12. The tank circuit of a Hartley oscillator is shown in the figure. If M is the mutual inductance between the inductors, the oscillation frequency is

(a) $\frac{1}{2\Pi/(L_1+L_2+2M)}$

(b) $\frac{1}{2\pi\sqrt{(L_1+L_2-2M)C}}$

(c) $\frac{1}{2\Pi\sqrt{(L_1+L_2+M)C}}$

- $(d) \frac{1}{\sqrt[2\pi]{(L_1 + L_2 M)C}}$
- 13. Which bridge is used to determine frequency?
 - (a) Anderson bridge

(b) De sauty's bridge

(c) Wien's bridge

- (d) Campbell's bridge
- 14. A bipolar junction transistor with one junction forward biased and either the collector or emitter open, operates in the
 - (a) Cut-off rejion

- (b) Saturation rejion
- (c) Pinch off rejion
- (d) Active rejion
- 15. While measuring the phase difference between the signals $V_1(t) = 10 \sin wt$ and $V_2(t) = 10 \sin (wt+1)$, the lissajuns pattern observed on CRO was a circle.
 - The value of Φ is:
 - (a) 0

- (b) $\frac{\pi}{4}$
- $(c)\frac{\Pi}{2}$
- (d) π
- 16. An 8 bit counter type A/D converter makes at least 8000 conversions per second. The clock frequency is
 - (a) 2 MHz
- (b) 8 MHz
- (c) 1 MHz
- (d) 4 MHz
- 17. Mutual interaction forces between two particles can change:
 - (a) The linear momentum but not the kinetic energy.
 - (b) The kinetic energy but not the linear momentum.
 - (c) The linear momentum as well as the kinetic energy.
 - (d) Neither the linear momentum nor the kinetic energy.

18.	A particle is moving on an elliptical path under inverse square law of force of the format $F(r) = -K/r^2$. The eccentricity of the orbit is:					
	(a) A function of total energy			(b) independent of total energy		
	` ′		` '			
19.	` '	(c) a function of kinetic energy (d) independent of angular momentum. The total angular momentum of a system of particles is conserved when:				
1).	(a) the internal torque is zero (b) the external torque is zero					
	(c) the external torq		(d) the torque change			
20	` '		` '			
20.	then:	Whenever the Langrangian for a system does not contain a co-ordinate q_k explicitly then:				
	(a) q_k is a cyclic-coordinate					
	(b) p_k is a cyclic co					
		momentum is not a cor	nstant of motion			
	(d) q_k is always zer					
21.	•	f time leads to the law	of conservation of:			
	(a) the linear mome		gular momentum (c) e	nergy (d) parity		
22.	` /	` '	XY ₂ type eigen frequer			
:	can be represented		1112 of be organ readers	1, 1, 2		
	(a) $W_1 = W_2 = W_3$	~ , .	(b) $W_1 = 0$, $W_2 = W$	73		
	(c) $W_1 \neq W_2 \neq W_3$		(d) $W_1 = W_2 \neq W_3$.			
23.	• •	nergy so that its mass l	becomes zm ₀ . Its speed is	s :		
25.	-					
	(a) $\frac{\sqrt{3}}{2}$ c	(b) $\frac{3}{4} c$	(c) $\frac{3}{2}$ c	(d) $\sqrt{\frac{3}{2}} c$.		
24.	The expression for	the relativistic energy	of a particle is:			
	(a) m^2c^2	(b) $\sqrt{p^2c^2 + m_o^2c^2}$	$\overline{^{4}}$ (c) (m-m _o)c ²	(d) $p^2c^2 + m_o^2c^4$		
25.	The wavelength associated with an electron subjected to a potential difference of 1.25					
	KV is:					
	(a) 0.04 A ^o	(b) 0.4 A°	(c) 4.0 A°	(d) 4.4 A°		
26.	An electron has a		0 ⁴ m/s within the accu	racy of 0.01%. The		
	uncertainty in the position of the electron is:					
	(a) 1.1 X 10 ⁻⁴ m	(b) 11 X 10 ⁻⁴ m	(c) 0.11 X 10 ⁻⁴ m	(d) 0.011 X 10 ⁻⁴ m		
27.	The energy of a particle in one-dimensional rigid box of side L is:					
	n^2h^2	$8mL^2$	nh^2	n^2h^2		
	$(a)\frac{n^2h^2}{8mL^2}$	$(b)\frac{8mL^2}{n^2h^2}$	(c) $\frac{nh^2}{8mL^2}$	(d) $\frac{n^2h^2}{8m^2L^2}$		
28.	The lowest energy of one – dimensional harmonic oscillator is:					
	(a) $\frac{3}{2} \hbar W$	(b) $-\frac{1}{2} \hbar w$	(c) $\frac{1}{2} \hbar W$	(d) <i>ħw</i>		
29.	The quantum mechanical operator for energy is:					
·	(a) $ih\frac{\partial}{\partial t}$ (b) $i\hbar\frac{\partial}{\partial t}$ (c) $\frac{\hbar}{i}\frac{\partial}{\partial t}$ (d) $-i\hbar\frac{\partial}{\partial t}$					
	- 0		H U			

30.	The wave function of hydrogen atom in ground state (1S) is:					
	(a) $\psi(1S) = \frac{1}{\sqrt{\pi}} (\frac{1}{\alpha_0})^{3/2}$	$e^{-r/lpha_o}$				
	(b) $\psi(1S) = \frac{1}{\pi} (\frac{1}{\alpha_0})^{3/2} e^{-r/\alpha_0}$					
	(c) $\psi(1S) = (\frac{1}{\pi\alpha_o})^{1/2} e$					
	(d) $\psi(1S) = \frac{1}{\sqrt{\pi}} (\frac{1}{\alpha_o})^{3/2}$	e^{-r^2/α_0^2}				
31.	The splitting of energy level (a) Stark effect (c) Paschen-back effect The X – component of orbit	(b) Zeeman (d) None of	effect these.			
	(a) $\frac{\hbar}{i} \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right)$	(b) $\frac{\hbar}{i} \left(z \frac{\partial}{\partial z} \right)$	$(x-x\frac{\partial}{\partial z})$			
	(c) $\frac{\hbar}{i} \left(x \frac{\partial}{\partial z} - z \frac{\partial}{\partial x} \right)$	(d) None of	these			
33.	A D/A converter is to have a full – scale output voltage of 10V and a resolution less than 40 mV. The number of bits required are					
	(a) 250 (b) 8		(c) 7	(d) 6		
34. A carnot engine has an efficiency of $\frac{1}{6}$. On reducing the sink temperature			temperature by 65°C, the			
	efficiency becomes $\frac{1}{3}$. What	is the source te	mperature?			
	3	350 K		(d) 400 K		
35.	Which one of the Manwell's thermodynamic relations given below leads to clansins –					
	clapeyson equation?					
	(a) $(\frac{\partial T}{\partial V})_S = -(\frac{\partial P}{\partial S})_V$	(b)	$\left(\frac{\partial T}{\partial P}\right)_S = \left(\frac{\partial V}{\partial S}\right)_P$			
	(c) $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$	(d)	$\left(\frac{\partial S}{\partial P}\right)_S = -\left(\frac{\partial V}{\partial T}\right)_P$			
36.	Planck's law reduces to Rayleigh – Jeans law at extremely					
	(a) Large wavelengths and l	(a) Large wavelengths and low temperatures				
	(b) Small wavelengths and l	•				
	()	(c) Large wavelengths and high temperatures				
	(d) Small wavelengths and 1	Aug temperatur	Δ			

- (d) Small wavelengths and low temperature
- For a diatomic gas having 3 translational and 2 rotational degrees of freedom, the 37. energy is given by
 - (a) $\frac{5}{2} KT$
- (b) $\frac{3}{2} KT$ (c) $\frac{1}{2} KT$
- (d) KT

- 38. In case of Bose Einstein Condensation
 - (a) Number of particles increases in lower energy levels at low temperatures and high pressures
 - (b) Number of particles decreases in lower energy levels at low temperatures and high pressures

pressures	ilid 10 W			
(d) Number of particles decreases in lower energy levels at high temperatures	and low			
pressures				
Which of the relation between internal energy U and canonical partition function	on Z, is			
true?				
(a) $\bigcup = \frac{\partial}{\partial T} \log Z$				
(c) $\bigcup = -KT \log Z$ (d) $\bigcup = KT \frac{\partial}{\partial V} \log Z$				
The quantum statistics reduces to classical statistics under which of the fo	llowing			
condition?				
(a) $P\lambda^{3} \simeq 1$ (b) $P\lambda^{3} \gg 1$ (c) $P\lambda^{3} \ll 1$ (d) $P = 0$				
In statistical physics, the absolute temperature T of a system is related to	he total			
number of accessible states Ω as :				
(a) $KT = \frac{\partial \Omega}{\partial E}$ (b) $KT = \frac{\partial \log \Omega}{\partial E}$ (c) $\frac{1}{KT} = \frac{\partial \Omega}{\partial E}$ (d) $\frac{1}{KT} = \frac{\partial \Omega}{\partial E}$	$log\Omega$			
Which one of the following electronic transitions in Neon is responsible for				
action in a helium – neon laser?	D/ KDLIC			
(a) $68 \rightarrow 5p$ (b) $58 \rightarrow 4p$ (c) $58 \rightarrow 3p$ (d) $48 \rightarrow 3$	n			
Deutron in its ground state has a total angular momentum $J = 1$ and a positiv				
The corresponding orbital angular momentum L and spin S combinations are	parity.			
(a) $L = 0$, $S = 1$ and $L = 2$, $S = 0$				
(a) $L = 0$, $S = 1$ and $L = 2$, $S = 0$ (b) $L = 0$, $S = 1$ and $L = 1$, $S = 1$				
(c) $L = 0$, $S = 1$ and $L = 2$, $S = 1$				
(d) $L = 1$, $S = 1$ and $L = 2$, $S = 1$				
The typical wavelengths emitted by diatomic molecules in purely vibrational	. purely			
rotational transitions are respectively in the region of	, 1			
(a) Infrared and Visible (b) Visible and Infrared				
(c) Infrared and Microwave (d) Microwave and Infrared				
(,)				
The NMR spectrum of ethanol (CH ₃ CH ₂ OH) comprises of three branches of	spectral			
lives. The number of spectral lives in the bunch corresponding to CH ₂ group is				
(a) 1 (b) 2 (c) 3 (d) 4				
For a multi - electron atom, l, L and S specify the one electron orbital	angular			
momentum, total orbital angular momentum and total spin angular momentum				
respectively. The selection rules for electric dipole transition between the two				
electronic energy levels, specified by l, L and S are				
(a) $\Delta L = 0, \pm 1; \Delta S = 0; \Delta l = 0, \pm 1$				
(b) $\Delta L = 0, \pm 1; \Delta S = 0; \Delta l = \pm 1$				
(c) $\Delta L = 0, \pm 1; \Delta S = \pm 1; \Delta l = 0, \pm 1$				
(d) $\Delta L = 0, \pm 1; \Delta S = \pm 1; \Delta l = \pm 1$				
Assuming that the $L-S$ coupling scheme is valid, the number of permitted tra	nsitions			
from 2P _{3/2} to 2S _{1/2} due to a weak magnetic field is				
(a) 2 (b) 4 (c) 6 (d) 10				

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.		th 1.5 μm incident on a material with a characteristic I 0^{12} Hz results in a stokes – shifted line of wavelength (b) 1.57 μm (c) 1.67 μm (d) 1.77 μm		
49.	The Laude g factor for			
	(a) $\frac{2}{3}$	(b) $\frac{3}{2}$	(c) $\frac{3}{4}$	$(d)\frac{4}{2}$
50.	•	2	•	2 million volts will be:
	(a) $10^{-1}A^{\circ}$	(b) $10^{-2}A^{\circ}$		(d) $10^{-4}A^{\circ}$